
 ERDC/CHL CHETN-IV-38 
 September 2001 

Field Data Recovery in Tidal System 
Using Artificial Neural Networks (ANNs) 

by Bernard B. Hsieh and Thad C. Pratt 

PURPOSE: The field data collection program consumes a major portion of a modeling budget.  
However, due to instrumentation adjustment and failure, the obtained data could be incomplete 
or producing abnormal recording curves. For instance, complete boundary condition data are 
often critical to the numerical modeling effort. The data may be unavailable at appropriate points 
along the computational domain when the modeling design work changes. In addition, the key 
locations, which usually have high gradient variation in the numerical model, could be partially 
missing. Therefore, the judgment of engineering design will lose its reliability if sufficient 
measurement is not available for those points. The problem of estimation of temporal and spatial 
variation as described requires more advanced techniques to solve both time-delay and 
nonlinearity features. In this Coastal and Hydraulics Engineering Technical Note (CHETN), 
Artificial Neural Networks (ANNs) are used to address the missing data recovery problem for 
the data collection activities for a tidal lagoon, Biscayne Bay, FL.  
 
BACKGROUND: The use of modern computing techniques including soft computing and 
numerical models and their integration has become commonplace in managing water resources 
projects. While the latter methodology has been popular to address the physical phenomena, the 
former technique is paid less attention by the researchers. The main advantages of using 
numerical models are based on their capability of prescribing the physical laws in the modeling 
domain. However, their accurate usage often requires extensive computational resources and 
validation using extensive field measurements, and many system parameters need to be 
estimated, particularly for large-scale and complex systems. Hsieh (1997) has proposed a 
framework design of flow model validation using the integration method of numerical model, 
stochastic filter, and system simulation techniques. This CHETN presents an application to 
address the missing data recovery problem in that design.  
 
ANNs modeling techniques to solve tidal hydraulic problems are a relatively new area (Dibike 
and Abbott 1999; Tsai and Lee 1999). ANNs are able to solve problems in a way that resembles 
human intelligence (Khonker et al. 1998). It learns by examples. In the sense that observations 
provide knowledge, they are able to capture the knowledge within a data set. Unlike traditional 
artificial intelligence and statistical solution approaches, ANNs are able to solve problems 
without any prior assumptions. As long as enough data are available, a neural network will 
extract any regularities or patterns that may exist and use it to form a relationship between input 
and output. ANNs have probably become the most efficient tools for generalization problems. 
The technique is also able to provide a map from one multivariable space to another through 
training, even when given a set of data with noise. These properties make ANNs well suited to 
problems of estimation and prediction for flow phenomena. Usually, the data set is divided into 
training, cross-validation, and testing portions. The training part is used to identify the optimal 
weights to bridge the input/output series while the cross-validation is used to monitor the training 
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process to avoid overtraining. The testing part is used to examine the performance of the ANNs 
so it is not used in the training process. 
 
The most popular ANNs algorithm is the classical multilayer perceptron (MLP) model. MLPs 
(Figure 1) are feed-forward neural networks trained with a standard backpropagation algorithm. 
This is a topology of ANNs with eight inputs, one hidden layer (three nodes), and one output 
system. They are supervised networks, so they must be trained for the desired response. They can 
learn how to transform the input data into the desired response if sufficient patterns are present in 
the training data set. With one or two hidden layers, an MLP can approximate the performance of 
optimal statistical classifiers in difficult problems. Two other two algorithms, namely time-
lagged neural networks (TDNN) and recurrent neural networks (RNN) are more powerful 
algorithms to solve time series forecasting and prediction problems requiring the capability of 
addressing time delay problems. 
 

 
Figure 1.  Fully connected feed-forward network  

with one hidden layer and output layer 
 
DATA RECOVERY SYSTEM (DRS): The DRS for missing data is based on the transfer 
function (response function) approach. The identification of system response is constructed by 
the training and cross-validation processes of learning from a common period between input and 
output series for ANNs. The testing portion (performance), which is not involved in the training, 
is used to compute the simulated output from additional input series. The simulated output using 
optimal weights from the best fit activation function (transfer function) can generate a recovered 
data series. This series is called the missing window. Three types of DRS are defined as follows: 
 

a. Self-recovery. This type of recovery is based on a single time series itself. In this situation 
no other series can be used as the reference to create the response bridge. The method is 
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to break a long time series into two portions. The first part of the data is considered as the 
input, and the second part is regarded as the output function and contains the missing 
window. Longer time series training data sets that contain more significant patterns are 
critical for output performance. 

 
b. Neighboring station recovery. This is the most typical recovery case. Obviously, the local 

recovery should have better performance than the remote recovery. If the involvement 
between input and output functions is a different parameter, this recovery is classified as 
the different parameter recovery. Otherwise, it is called the same parameter recovery. 

 
c. Multivariate parameter recovery. Since the system response from input to output could 

involve more than one variable and receive different time delay, this more complex 
system requires physical cause and effect to identify the system structure. For example, 
the salinity variation for a particular location could be caused by the source tide, local 
wind, and nearby freshwater inflow for an estuary system. 

 
STUDY AREA AND FIELD DATA COLLECTION PROGRAM: Pratt et al. (in preparation) 
summarizes the field data collection program for Biscayne Bay, a shallow, subtropical marine 
lagoon located on the southeast coast of Florida. It covers approximately 100 km from north to 
south and varies from less than 1.6 km to 13 km in width. It is bordered on the west by the south 
Florida mainland and on the east by a series of barrier islands and shallow, vegetated mud banks. 
The developed data sets and numerical models that can aid in the study and management of 
Biscayne Bay include circulation, salinity, and water quality. Bathymetry and geometry of the 
navigation channels, interconnecting canals and inlets, astronomical tide-induced currents, wind-
induced currents, and freshwater inflow are major factors that determine circulation patterns. 
 
The purpose of the field data collection program was to provide hydrodynamic results including 
velocities, flow distributions, circulation patterns, water levels, salinities, and meteorological 
measurements during long-term monitoring and short-term intensive surveys. The long-term 
monitoring equipment used to collect the data consisted of five bottom-mounted Acoustic 
Doppler Profiler (ADP) velocity meters, 12 water-level and salinity recorders, and one 
meteorological station within the study area. 
 
KNOWLEDGE BASE AND ANNs MODELING: To perform the data recovery system, a 
number of stations with 15-min intervals during February 1998 were used to conduct the 
analysis. To identify the performance of ANNs, a week of data were purposely hidden to 
compare the simulation results. This recovery information is called the missing window in the 
system. 
 
For the hydraulic engineering applications, the back propagation networks, the time-delayed 
networks, and the recurrent networks are used to perform the comparisons. The best performance 
was found to be partially recurrent networks. This Tech Note, unless indicated otherwise, will 
use the recurrent network to demonstrate the results. The software used for this study is 
NeuroSolutions (Version 3.02). The data set is divided into training (2 weeks), cross validation 
(1 week), and testing (1 week) portions. The performance analysis is represented by several 
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quantity statistical numbers, including mean square error, normalized mean square error 
(NMSE), mean/maximum/minimum absolute errors, and correlation coefficient (CC).  
 
The following parameters are used to perform most of the recurrent networks: 
 

Input layer 
 AF=TDNN axon 
 Depth in samples=10 
 HL PE’s= 2 
 AF=linear axon 
 Learn rule=momentum 
 Step size=1.0 
 Momentum factor=0.7 
Hidden layer (HL)=1 
Output layer 
 AF=linear axon 
 Learn rule=momentum 
 Step size=0.1 
 Momentum factor=0.7 
Maximum epoches=1000 

 
RESULT DEMONSTRATION: 
 

a. Self- recovery of surface elevations. Tidal stations in the bay entrance are sometimes used 
to serve as the boundary condition for the numerical modeling study. The experience 
shows this application can avoid the iteration process for numerical modeling when the 
boundary condition is not available. The worst condition for the data recovery is that no 
other reference data set, such as neighboring station, can be used to construct the 
response function. Semidiurnal, diurnal, and neap-spring components dominate the 
harmonic constituents in the tidal system. It seems 2 months of surface elevations 
(two lunar cycles) are sufficient to construct the self-recovery scheme. The record can be 
divided into two parts: the first month’s data are assumed as the input series (Figure 2a) 
and the second month’s data with missing window (Figure 2b) are used as the output 
series. Shaded portions of the figures represent missing windows. The testing process of 
ANNs modeling creates the estimation of the missing window. Very good agreement 
(Figure 2c) was found from this missing window recovery result (CC=0.9716 and 
NMSE=0.0996). 

 
b. Neighboring station recovery. The first demonstration of this recovery was to use the 

tidal station (tide 8) (Figure 3a) to recover the partial missing record in a tidal station 
(tide 9) (Figure 3b) which is 9.6 km away. This is the most typical tidal signal 
propagation problem due to the friction effect. The excellent performance (Figure 3c) 
was obtained by using the recurrent ANNs (CC=0.9906 and NMSE=0.0205). Using the 
surface elevation to recover the salinity concentration at the same location (sta 11) was 
the second application. The poor results (CC=0.5576 and NMSE=0.6950) were due to 
other forcing factors, such as wind stress, freshwater inflow, and the local effect. 
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a. Input series for surface elevation at lagoon entrance (ft) 

 

 
b. Output series for surface elevation at lagoon entrance (ft) 

 

 
c. Self-recovery for surface elevation at lagoon entrance (ft) 

(missing window recovery (dashed line)) 
 

Figure 2. Self-recovery of surface elevations  
(To convert feet to meters, multiply by 0.3048) 
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a. Input series for surface elevation within lagoon (ft) 

 

 
b. Output series for surface elevation at lagoon entrance (ft) 

 

 
c. Neighboring station recovery for surface elevation at lagoon entrance (ft) 

(missing window recovery (dashed line )) 
 

Figure 3. Neighboring station recovery  
(To convert feet to meters, multiply by 0.3048) 
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c. Multivariate parameter recovery. The tidal current is a very important parameter in the 
tidal hydrodynamic system and is costly to collect. The x-component wind stress 
(Figure 4a) and the x-component of current in sta 3 (Figure 4b) receive signals from the 
ocean tide (sta 9 from 6.4 km away). The data recovery for this case is shown in 
Figure 4c. Except for the small short periodic variation, the results show very good 
pattern match. 

 
RECOVERY RELIABILITY: 
 

a. Physical forcings as input. As in the previous analysis, the reliability of data recovery 
also depends on the selected parameter and how well the forcing functions are included 
as the model input. A comparison (Table 1) addresses the reliability of tidal current 
recovery due to physical processes, namely, tidal forcing, surface slope, and related 
physical parameters. While tidal current due to the surface slope between two 
neighboring surface elevation shows the best results, two other approaches also obtain 
very high correlation. The main source of errors comes from small-scale variation. This 
could be caused by any other local effect or other physical parameters not addressed well 
enough. The results show that the wind stress contributes only very minor improvement 
for the analysis. This is probably because the effects of the wind stress are longer 
duration (sample depth) than the tidal forcing. A further analysis using mixture networks 
to separate the input influence could be the alternative approach. 

 
Table 1 
Reliability of Tidal Current Recovery Due to Physical Forcing Parameters (Correlation 
Coefficient and NMSE (cm/sec)) 
Input/Output Training Cross-Validation Missing Window 

Tide/tidal current 0.933 (0.131) 0.935 (0.126) 0.967 (0.080) 

Surface slope/current 0.944 (0.110) 0.943 (0.111) 0.972 (0.069) 

Tide; wind/current 0.936 (0.126) 0.939 (0.118) 0.968 (0.077) 

Wind/current 0.105 (0.988) 0.104 (0.994) 0.100 (0.995) 

 
b. Missing window size. An important objective for simulating the missing DRS is to 

determine how the performance might be related to the size of the missing window. A 
comparison was conducted by using a tidal current simulation example with missing 
window sizes of 100, 200, 300, and 600 values. While the training data used the same 
length of record, the cross-validation used less information when the missing window 
enlarged. No significant differences (Table 2) were found from both training and cross-
validation (CC and NMSE). The reliability of missing data recovery gets lower as the 
window size gets smaller. This unexpected result is due mainly to the initial simulation 
having larger errors than the following time-steps. When the window size gets smaller, 
these errors contribute a higher percentage of total error to the overall performance. This 
suggests that, when the missing window gets very small, the simulation window could 
enlarge the window in the beginning end (about 20 more time-steps from this case). 
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a. Input series for surface elevation at lagoon entrance (ft) and wind stress (m/sec) 

(To convert feet to meters, multiply by 0.3048) 
 

 
b. Output series for tidal current in sta 3 (cm/sec) 

 

 
c. Multivariate parameter recovery for tidal current using surface 

elevation and wind stress as inputs (recovery – dashed line) 
 

Figure 4. Multivariate parameter recovery 
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Table 2 
Recovery Reliability of Tidal Current (Tidal Forcing and Wind Stress as Inputs) Due to 
Missing Window Size (Correlation Coefficient and NMSE (cm/sec)) 
Window Size Training Cross-validation Missing Window (Testing) 

100 0.955 (0.088) 0.967 (0.074) 0.880 (0.246) 

200 0.955 (0.088) 0.966 (0.077) 0.926 (0.146) 

300 0.953 (0.093) 0.968 (0.081) 0.946 (0.108) 

600 0.954 (0.090) 0.967 (0.077) 0.957 (0.084) 

 
c. Missing window location. The main feature using ANNs is to recognize and learn the 

historical patterns. Therefore, another critical issue for DRS is the reliability due to the 
missing window location from the entire data set. This is particularly important when the 
data length is not very long. This test is applied to the simulation of tidal current due to 
the surface slope between two neighboring surface elevations. The original data set was 
divided into four quarters. Two quarters were used to perform the training, one quarter 
was used to conduct the cross-validation, and the remaining quarter was used to generate 
the missing window (testing). Four combinations (Table 3) with the sequences of 
training, cross-validation, and testing (missing window) were investigated by checking 
the performance due to the location of the missing window. The highlighted correlations 
in Table 3 show very satisfactory performance. The analysis indicated that this is due 
primarily to the pattern similarity between the data from quarters 2 and 4. The pattern for 
data from quarter 1 is quite different from the other quarters. Therefore, the pattern 
similarities are still the major factor to assure the good performance for missing data 
recovery. It is not because of the order of data representation during the learning 
processes. 

 
Table 3 
Recovery Reliability of Tidal Current (Surface Slope) Due to Location of Missing Window 
(Correlation Coefficient and NMSE (cm)) 

Data Representation (quarters) 

Tr C-V Te Training Cross-validation Missing Window 

1, 2 3 4 0.930 (0.140) 0.924 (0.152) 0.971 (0.065) 

1, 4 2 3 0.914 (0.171) 0.972 (0.056) 0.919 (0.158) 

3, 4 1 2 0.952 (0.095) 0.898 (0.300) 0.978 (0.055) 

2, 3 4 1 0.976 (0.046) 0.967 (0.071) 0.916 (0.219) 

 
CONCLUSIONS: ANNs were used to simulate missing data recovery. The partially recurrent 
networks receive the best performance for a tidal lagoon system in the Biscayne Bay data 
collection program. The surface elevation is the easiest physical parameter for self-recovery, 
neighboring station recovery, and multivariate recovery, while the conservative parameters, such 
as salinity, are more difficult to recover due to the complex input system and their response 
speed. The mixture ANN approach may be the alternative to improve the solution. The 
performance due to missing window size is not only directly related the length of total data but 
also associated with the initial portion of the simulation. The data representation of assigning the 
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order of learning processes due to the missing window location is not significant. The degree of 
pattern similarity between the training data and the testing data determines the performance. 
 
ADDITIONAL INFORMATION: For further information, contact Dr. Bernard B. Hsieh (Voice: 
601-634-3679, e-mail: hsiehb@wes.army.mil or Mr. Thad C. Pratt (Voice: 601-634-2959, 
e-mail: prattt@wes.army.mil), U.S. Army Engineer Research and Development Center, Coastal 
and Hydraulics Laboratory. For information about the Coastal Inlets Research Program, please 
contact Dr. Nicholas C. Kraus (Voice: 601-634-2016, e-mail: krausn@wes.army.mil). Any 
mention of a commercial product does not constitute an endorsement by the Federal government. 
This CHETN should be cited as follows: 
 

Hsieh, B. B. and Pratt, T. C. (2001) “Field data recovery in tidal system using 
artificial neural networks (ANNs),” Coastal and Hydraulics Engineering Technical 
Note CHETN-IV-38, U.S. Army Engineer Research and Development Center, 
Vicksburg, MS.   http://chl.wes.army.mil/library/publications/chetn/ 
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